Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Early transition metal alkyl and hydride complexes have been widely explored for their propensity to faciltate C–H activation through a concerted σ-bond metathesis mechanism. Herein, we report the synthesis of a tris(amido) Zr(IV) alkyl complex 1 as a precursor of accessing a proposed transient Zr(IV)-hydride. Upon intramolecular C–H activation of a pendent methyl group, a strained cyclometalated complex 2 is obtained. Relief of ring strain and cooperative metal–ligand C–H activation provided access to Zr-acetylide complex 3, which is capable of undergoing insertion reactivity into carbonyl containing compounds, like aldehydes and ketones. Complexes 1–3 are characterized using multinuclear NMR spectroscopy, UV–vis spectroscopy, and X-ray crystallography. Newly reported electron-rich propargylic alcohols 6 and 7 are isolated and fully characterized using multinuclear NMR spectroscopy, ESI-MS, and FTIR.more » « lessFree, publicly-accessible full text available August 6, 2026
-
Free, publicly-accessible full text available May 12, 2026
-
The use of redox-active ligands with the f-block elements has been employed to promote unique chemical transformations and explore their unique emergent electronic properties for a myriad of applications. In this study, we report eight new tris(amido) metal complexes: 1–Ln (Ln = Tb3+, Dy3+, Ho3+, Er3+, Tm3+, and Yb3+), 1–La, and 1–Ti (an early transition metal analogue). The one-electron oxidation of the tris(amido) ligand was conducted to generate semi-iminato complexes 2–Ln, 2–La, and 2–Ti, and these complexes were studied using EPR. Tris(amido) complexes 1–Ln, 1–La, and 1–Ti were fully characterized using a range of spectroscopic (NMR and UV–vis/NIR) and physical techniques (X–ray diffraction and cyclic voltammetry, with the exception of 1–La). Computational methods were employed to further elucidate the electronic structures of these complexes. Lastly, complexes 1–Ln, 1–La, and 1–Ti were probed as catalysts for alkyl–alkyl cross-coupling, and the initial rate of the reaction was measured to explore the influence of the metal ion.more » « less
-
Catalytic site-selective hydroallylation of vinyl arenes and 1,3-dienes is reported. Transformations are promoted by a readily accessible bidentate carbodicarbene-rhodium complex and involve commercially available allyltrifluoroborates and an alco-hol. The reaction is applicable to vinyl arenes, and aryl or alkyl-substituted 1,3-dienes (30 examples). Allyl addition products are generated in 40–78% yield and in up to >98:2 site-selectivity. Reaction outcomes are consistent with the intermedi-acy of a Rh(III)-hydride generated by protonation of Rh(I) by an acid. A number of key mechanistic details of the reaction are presented: (1) Deuterium scrambling into the product and starting alkene indicates reversible Rh(III)–H migratory insertion. (2) A large primary kinetic isotope effect is observed. (3) With substituted allyltrifluoroborates (e.g., crotyl-BF3K) mixtures of site isomers are generated as a result of transmetalation followed by Rh-(allyl) complex equilibration; consequently, disproving outer-sphere addition of the allyl nucleophile to Rh(III)-(η3-allyl). (4) The stereochemical analysis of a cyclohexadiene allyl addition product supports a syn Rh(III)–hydride addition. (5) A Hammett plot shows a negative slope suggesting reductive elimination as the rate-determining step. Finally, utility is highlighted by a iodocyclization and cross metathesis.more » « less
An official website of the United States government
